Imaging of Trabecular Microfracture and Bone Marrow Edema and Hemorrhage
by Yong-Whee Bahk
2020-09-16 11:38:47
Imaging of Trabecular Microfracture and Bone Marrow Edema and Hemorrhage
by Yong-Whee Bahk
2020-09-16 11:38:47
This excellently illustrated monograph summarizes the updated fresh information on the theoretical, practical, and rapidly extended facets of gamma correction 99mTc-hydroxymethylene diphosphonate pinhole bone scan (99mTc-GCPBS) to MRI, CR, and MDCT.&...
Read more
This excellently illustrated monograph summarizes the updated fresh information on the theoretical, practical, and rapidly extended facets of gamma correction 99mTc-hydroxymethylene diphosphonate pinhole bone scan (99mTc-GCPBS) to MRI, CR, and MDCT. Basically, 99mTc-GCPBS is able to precisely visualize and quantitate callused trabecular microfracture (CTMF) which is as little as 200 μm in size. The extended gamma correction images can very neatly demonstrate CTMF on MRI, conventional radiography (CR), and multidetector computed tomography (MDCT). Whenever appropriate, histological correlation is provided in conjunction with fine gamma corrected images. In this setting, ACDSee 10 gamma correction MRI and CR have been found to offer a highly useful option that deserves wider clinical interest. In practice, gamma correction MRI, CR, and MDCT can distinctly visualize CTMF so that CTMF can be precisely measured simply using an optic lens. By comparison, the naïve MRI, for example, shows CTMF which measures as big as 2 mm in size. Furthermore, 99mTc-GCPBS can now differentiate bone marrow edema from hemorrhage using the visuospatial mathematic method, which includes the ImageJ of the NIH.
Less