Wavelets, Multiscale Systems and Hypercomplex Analysis
by Daniel Alpay 2021-01-07 00:35:30
image1
From a mathematical point of view it is fascinating to realize that most, if not all, of the notions arising from the theory of analytic functions in the open unit disk have counterparts when one replaces the integers by the nodes of a homogeneous tr... Read more

From a mathematical point of view it is fascinating to realize that most, if not all, of the notions arising from the theory of analytic functions in the open unit disk have counterparts when one replaces the integers by the nodes of a homogeneous tree. It is also fascinating to realize that a whole function theory, different from the classical theory of several complex variables, can be developped when one considers hypercomplex (Clifford) variables, Fueter polynomials and the Cauchy-Kovalevskaya product, in place of the classical polynomials in three independent variables.

This volume contains a selection of papers on the topics of Clifford analysis and wavelets and multiscale analysis, the latter being understood in a very wide sense. The theory of wavelets is mathematically rich and has many practical applications.

Contributors: R. Abreu-Blaya, J. Bory-Reyes, F. Brackx, Sh. Chandrasekaran, N. de Schepper, P. Dewilde, D.E. Dutkay, K. Gustafson, H. Heyer, P.E.T. Jorgensen, T. Moreno-García, L. Peng, F. Sommen, M.W. Wong, J. Zhao, H. Zhu

Less
  • ISBN
  • 9783764375874
Prof. Daniel Alpay is a faculty member of the department of mathematics at Ben-Gurion University, Beer-Sheva, Israel. He is the incumbent of the Earl Katz Family chair in algebraic system theory. He h...
Compare Prices
Available Discount
No Discount available
Related Books