Parametric and Nonparametric Inference from Record-Breaking Data
by Sneh Gulati 2020-04-19 20:35:33
image1
As statisticians, we are constantly trying to make inferences about the underlying population from which data are observed. This includes estimation and prediction about the underlying population parameters from both complete and incomplete data. Rec... Read more
As statisticians, we are constantly trying to make inferences about the underlying population from which data are observed. This includes estimation and prediction about the underlying population parameters from both complete and incomplete data. Recently, methodology for estimation and prediction from incomplete data has been found useful for what is known as "record-breaking data," that is, data generated from setting new records. There has long been a keen interest in observing all kinds of records-in particular, sports records, financial records, flood records, and daily temperature records, to mention a few. The well-known Guinness Book of World Records is full of this kind of record information. As usual, beyond the general interest in knowing the last or current record value, the statistical problem of prediction of the next record based on past records has also been an important area of record research. Probabilistic and statistical models to describe behavior and make predictions from record-breaking data have been developed only within the last fifty or so years, with a relatively large amount of literature appearing on the subject in the last couple of decades. This book, written from a statistician''s perspective, is not a compilation of "records," rather, it deals with the statistical issues of inference from a type of incomplete data, record-breaking data, observed as successive record values (maxima or minima) arising from a phenomenon or situation under study. Prediction is just one aspect of statistical inference based on observed record values. Less
  • Publication date
  • Language
  • ISBN
  • March 14, 2013
  • eng
  • 9780387215495
Compare Prices
image
PDF (drm free, digitally watermarked)
Available Discount
12 % OFF
12% off Academic Book Titles (ebooks.com)

See More Details

Description: Back to School Promotion at eBooks.com. 12% off Academic book titles. Landing page is on our academics category page. Static image.

10 % OFF
Save 10% OFF on Student Text Books (ebooks.com)

See More Details

Description: Purchase textbooks at student discounts!

20 % OFF
20% Off on selected Categories

See More Details

Description: 20% Off these Categories- Body Mind & Spirit, Family & Relationships, Foreign Language Study, History, Sports & Recreation. Offer Lasts all through January.

Related Books