An Introduction to the Mathematical Structure of Quantum Mechanics
by Franco Strocchi 2020-05-27 07:21:09
image1
The second printing contains a critical discussion of Dirac derivation of canonical quantization, which is instead deduced from general geometric structures. This book arises out of the need for Quantum Mechanics (QM) to be part of the common educati... Read more
The second printing contains a critical discussion of Dirac derivation of canonical quantization, which is instead deduced from general geometric structures. This book arises out of the need for Quantum Mechanics (QM) to be part of the common education of mathematics students. The mathematical structure of QM is formulated in terms of the C*-algebra of observables , which is argued on the basis of the operational definition of measurements and the duality between states and observables, for a general physical system. The Dirac–von Neumann axioms are then derived. The description of states and observables as Hilbert space vectors and operators follows from the GNS and Gelfand–Naimark Theorems. The experimental existence of complementary observables for atomic systems is shown to imply the noncommutativity of the observable algebra, the distinctive feature of QM; for finite degrees of freedom, the Weyl algebra codifies the experimental complementarity of position and momentum (Heisenberg commutation relations) and Schrödinger QM follows from the von Neumann uniqueness theorem. The existence problem of the dynamics is related to the self-adjointness of the Hamiltonian and solved by the Kato–Rellich conditions on the potential, which also guarantee quantum stability for classically unbounded-below Hamiltonians. Examples are discussed which include the explanation of the discreteness of the atomic spectra. Because of the increasing interest in the relation between QM and stochastic processes, a final chapter is devoted to the functional integral approach (Feynman–Kac formula), to the formulation in terms of ground state correlations (the quantum mechanical analog of the Wightman functions) and their analytic continuation to imaginary time (Euclidean QM) . The quantum particle on a circle is discussed in detail, as an example of the interplay between topology and functional integral, leading to the emergence of superselection rules and θ sectors . Errata(s). Errata Less
  • Publication date
  • Language
  • ISBN
  • October 30, 2008
  • eng
  • 9789813107366
Franco Strocchi is Senior Research Fellow at INFN. He received his Laurea in Physics at the University of Pisa and Diploma in Physics at Scuola Normale Superiore, Pisa (1961). He has taught as Profess...
Compare Prices
Available Discount
12 % OFF
12% off Academic Book Titles (ebooks.com)

See More Details

Description: Back to School Promotion at eBooks.com. 12% off Academic book titles. Landing page is on our academics category page. Static image.

10 % OFF
Save 10% OFF on Student Text Books (ebooks.com)

See More Details

Description: Purchase textbooks at student discounts!

20 % OFF
20% Off on selected Categories

See More Details

Description: 20% Off these Categories- Body Mind & Spirit, Family & Relationships, Foreign Language Study, History, Sports & Recreation. Offer Lasts all through January.

Related Books